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CAE-based optimization looks back on a 
long tradition in engineering. The goal 
of optimization is often the reduction of 
material consumption while pushing the 
design performance to the boundaries of 
allowable stresses, deformations or other 
critical design responses. At the same time, 
safety margins should be reduced, prod-
ucts should remain cost effective and over-
engineering should be avoided. Of course 
a product should perform effectively in 
the real world, with the variety of manu-
facturing, assembly and environmental 
conditions which may be expected to oc-
cur not only optimal under one possible 
set of parameter realizations. It also has 
to function with suffi cient reliability un-
der scattering environmental conditions. 
In the virtual world, the impact of such 
variations can be investigated through, for 

example, stochastic analyses leading to 
CAE-based robustness evaluation. If CAE-
based optimization and robustness evalu-
ation are combined, the area of Robust De-
sign Optimization (RDO) is entered, which 
may also be called “Design for Six Sigma” 
(DFSS) or just “Robust Design” (RD).

The main idea behind such methodologies 
is the consideration of uncertainties with-
in the design process. These uncertainties 
may have different sources: for example, 
variations in loading conditions, toleranc-
es of the geometrical dimensions and ma-
terial properties caused by production or 
deterioration. In the design optimization 
procedure, some of these uncertainties 
may have a signifi cant impact on design 
performance and must therefore be con-
sidered.

Before entering the discussions of suitable 
and effi cient algorithms for CAE-based RDO, 
some important considerations hould be 
pointed out when enhancing CAE-based op-
timization to deliver CAE-based RDO.

Garbage in – garbage out

In order to understand the infl uence of un-
certainties, the best available knowledge  
about the expected uncertainties needs 
to be gathered gaining the best possible 
translation of this data into the statistical 
defi nition of the CAE-model. As an illustra-
tion, consider the conventional calculation 
of stress. It is clear that this requires a reli-
able value of Young’s modulus. The same 
question arises for stochastic analyses. If 
there are not trustable information on the 
essential input uncertainties, or no suit-
able approach to translate this informa-
tion into statistical distributions of scat-
tering parameters, a stochastic analysis 
should not be performed. In such a case 
this analysis would lead to useless esti-
mates of the variations, sensitivities, etc. 

While discussing how to formulate a suit-
able uncertainty model, one of the most 
important differences between CAE-based 
optimization and CAE-based robustness 
evaluation or even RDO should be noted. 
When simplifying an optimization task 
while using just a small subset of optimi-
zation parameters and a tiny parameter 
range you may not succeed in signifi cantly 
improving the design. Nevertheless, any 
variation is a valid space of the optimiza-
tion parameters and gives you valid infor-

mation about the optimization potential 
corresponding to this space. There is no risk 
of obtaining inaccurate or dangerous pre-
dictions simply through the restrictions you 
have applied to the design space: at worst, 
you may miss solutions which lie outside 
that space. In other words, in a determinis-
tic optimization the user can reduce almost 
arbitrarily large and complex parametric 
spaces to a handful of parameters with 
small ranges without the loss of confi dence 
of the obtained optimization results. 

In sharp contrast, the verifi cation of prod-
uct safety with a simplifi ed robustness 
evaluation is only possible, if the unimpor-
tance of any neglected uncertain inputs is 
proven or their effect is covered suffi ciently 
by safety factors. If signifi cant important 
effects are neglected during the analysis, 
the robustness assessment based on this 
insuffi cient information may be much too 
optimistic and the results may assume an 
artifi cial safety. For this reason, it is recom-
mended that any RDO task begins with a 
robustness evaluation of a represented 
design, introducing all possibly affecting 
uncertainties and making use of conser-
vative estimates of their expected scatter. 
This enables us to determine which uncer-
tainties are important and what accuracy 
of representation is necessary to introduce 
each uncertainty into the CAE model. Then 
it is secured that the uncertainty quanti-
fi cation and representation is appropriate, 
and proceed to answer the following ques-
tions:

• Is it suffi cient to check the infl uence of 
our uncertain parameters by assuming 
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a conservative upper and lower bound 
within a uniform distribution or is an 
more detailed identifi cation of their sta-
tistical distribution type necessary?

• Is it suffi cient to defi ne single indepen-
dent scattering parameters, should sca-
lar parameters with pair-wise correla-
tions be introduced, or is an utilization 
of more sophisticated spatial correlation 
models (“random fi elds”) necessary to 
represent the properties of the uncer-
tainties? (Wolff 2013, 2014)

Confi dent robustness measures need to be 
defi ned 

By defi ning an RDO task, measures of 
variation will be included into the objec-
tives and/or constraints. These statistical 
measures (mean value, standard deviation, 
higher order moments, safety margins or 
probabilities of exceeding a critical event) 
are outcomes of the stochastic analysis. 
Please note that all of these measures are 
estimates and their confi dence has to be 
proven. In similarity to the verifi cation of 
the mesh quality of a fi nite element analy-
sis, the verifi cation of each estimate of vari-
ance is necessary in order to be trusted in 
the predicted robustness of an investigated 
design. Everybody agrees that evaluating 
only 10 sample points will not lead to a con-
fi dent assessment of a six sigma design. A 
six sigma design requires the proof that the 
probability of its failure is not larger than 
three out of a million realizations. 10 sam-
ple points are suffi cient only to calculate a 
rough estimate of a mean value or a stan-

dard deviation. There will be no predictive 
value in using such an estimate to evaluate 
the small event probabilities associated 
with six sigma design analysis. A funda-
mental challenge of RDO is then how best 
to deploy your available solver time. Each 
design point will require many iterations 
to obtain accurate measures of robustness. 
However, if this means that too few design 
points are considered then the solution 
variation over the design space will be in-
adequately understood, and good solutions 
missed. Therefore, all RDO strategies need 
to estimate variation values with a minimal 
number of solver calls. To reach this goal, 
some methods make assumptions about 
the linearity of the problem or use response 
surface approximations spanning in the 
space of the scattering parameters. The 
accuracy of these assumptions or approxi-
mations must be demonstrated to satisfac-
torily prove the fulfi lment of the targeted 
robustness and reliability requirements.
 
If there are only vague knowledge about 
the importance of the various uncertainties 
and their best available representation in 
a CAE model, a verifi cation of the robust-
ness of existing designs is strongly recom-
mended before extrapolating robustness 
measures to future variants.

RDO is not just a small extension of an op-
timization problem

Often, in marketing or scientifi c publications, 
the RDO task is simplifi ed by the assump-
tion that the robustness space is a subspace 
spanned by the optimization parameters. 

The suggested RDO strategies based on this 
simplifi cation allow us to recycle solver runs 
from the optimization algorithms for the ro-
bustness evaluation and to reduce the addi-
tional effort of RDO compared to determin-
istic optimization. Unfortunately, for real 
world engineering applications there are ad-
ditional uncertain parameters beyond those 
that drive the optimization. These might 
include loading conditions, material proper-
ties or environmental effects. A meaningful 
assessment of robustness will require the 
effect of these parameters to be included. 
As a consequence, it needs to be accepted 
that the optimization and robustness pa-
rameters span different domains, and it is 
therefore commonly found that solver runs 
in the optimization domain cannot be recy-
cled directly to estimate robustness criteria 
and vice versa.

Therefore, it should be expected that sub-
stantial engineering robustness evalua-
tions or RDO tasks always have to consider 
a signifi cant amount of additional infor-
mation for the input uncertainty, which 
will start with a large number of uncer-
tain parameters and will need signifi cant 
additional CPU requirements. In the light 
of these additional costs, it is all the more 
important to carefully plan a suitable al-
gorithmic RDO workfl ow, double check 
any available uncertainty data and its best 
representation in the uncertainty model 
and carefully determine the most suitable 
measures of design robustness. 

Consequently, it is recommended to start 
with an iterative RDO approach using 
decoupled optimization and robustness 

steps, including an initial sensitivity analy-
sis in the domain of the optimization pa-
rameters as well as a subsequent sensitiv-
ity evaluation in the domain of uncertain 
parameters. This iterative approach helps 
to better understand the importance of 
each variable and the complexity of the 
RDO task in order to adjust the necessary 
safety margins. Only with this knowledge, 
and under circumstances where the itera-
tive approach does not converge, should a 
simultaneous RDO task be defi ned. The it-
erative approach will be illustrated in our 
show case example.

Deterministic Optimization

In parametric optimization, the optimiza-
tion parameters are systematically varied 
by mathematical algorithms in order to 
get an improvement of an existing design 
or to fi nd a global optimum. The design 
parameters are defi ned by their lower and 
upper bounds or by several possible dis-
crete values. 

In real world industrial optimization prob-
lems, the number of design parameters 
can often be very large. Unfortunately, the 
effi ciency of mathematical optimization 
algorithms decreases with an increasing 
number of design parameters. With the 
help of sensitivity analysis the designer can 
identify those parameters which contrib-
ute most to a possible improvement of the 
optimization goal. Based on this identifi ca-
tion, the number of actual design param-
eters may be dramatically reduced and an 
effi cient optimization can therefore be per-
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formed. This early sensitivity analysis may 
be useful in helping to decide whether the 
optimization problem has been formulated 
appropriately and whether the numerical 
CAE solver has behaved as expected.

Robustness evaluation

As noted above, optimized designs will 
typically be sensitive to variation or scat-
ter in their geometry, material parameters, 
boundary conditions and loads and so 
forth. A robust design process should pre-
dict how the optimized design is affected 
by this variation. Design robustness can 
be checked by applying stochastic analysis 
(such as Latin Hypercube Sampling) which 
is based on randomly generated collections 
of design variants possessing statistically 
scattered parameters and evaluating their 
performance. This will require the introduc-
tion of robustness measures such as mean 
value, standard deviation, safety margins to 
failure criteria as well as the probability of 
failure. If variation-based measures are cho-
sen, the approach is called “variance-based 
robustness evaluation”. While using proba-
bility-based measures, such a procedure is 
called “probability-based robustness evalu-
ation”, also known as “reliability analysis”. 

Robust Design Optimization

In this booklet, different strategies to 
search for a robust design are presented 
and investigated with respect to their effi -
ciency and applicability to time consuming 
numerical models. Iterative RDO has been 

described above, where deterministic opti-
mization is combined with variance-based 
robustness analysis at certain points dur-
ing the optimization process. In such a 
scheme, the frequency of coupling and in-
teraction of both tasks has to be defi ned. 
During the deterministic cycles of the opti-
mization, safety factors should also be de-
fi ned to ensure that a suffi cient distance 
to the failure criteria is maintained. These 
safety factors may be adjusted during the 
iterative RDO process. A fi nal robustness 
and reliability proof will be mandatory at 
the end of the procedure. This procedure is 
state-of-the-art in the majority of publica-
tions on real world RDO projects (Roos and 
Hoffmann 2008), (Roos et al. 2009).

If the safety margins fl uctuate within the 
optimization domain (for example due to 
the interaction of several failure phenom-
ena) an iterative procedure may require a 
large number of iterations. In such a case, 
an automatic approach where the robust-
ness criteria are estimated for every candi-
date in the optimization domain, a so-called 
nominal design, may be more effi cient with 
respect to the CPU requirements. This pro-
cedure is called a simultaneous RDO ap-
proach. Since the robustness evaluation is 
performed as an internal loop within the 
global optimization loop, this approach is 
sometimes also called “loop in loop” RDO.

By defi nition, sensitivity analysis consid-
ers how the variation in the output of a 
model can be apportioned, qualitatively 
and quantitatively, to different sources of 
variation of the input of a model (Saltelli 
et al. 2008). In order to quantify this con-
tribution of each input parameter to each 
response variable under real world CAE 
conditions comprising non-linear, noisy 
problems with large number of param-
eters, variance based methods prove to be 
suitable. With these methods, the propor-
tion of the output variance can directly be 
quantifi ed, which is caused by each input 
variable variation. Such an approach can be 
applied equally to the domains of the opti-
mization and the uncertainty parameters. 
In the optimization space, the continuous 
variables are represented with uniform 
distributions. In the uncertainty space, 

adequate distribution functions and cor-
relation models for our parameters are uti-
lized. Therefore, variance-based sensitivity 
analysis is suitable as preprocessing step 
for both an optimization and robustness, 
to investigate and identify variable impor-
tance as well as to estimate the amount of 
unexplained variation of response values 
which may occur from CAE solver noise, 
and to identify functional correlations to 
the input variation.

In contrast to local derivative-based sensi-
tivity methods, global variance based ap-
proaches quantify the contribution with 
respect to the defi ned total variable varia-
tion. Unfortunately, suffi ciently accurate 
variance-based methods require a huge 
numerical effort due to the large number 
of necessary simulation runs. Therefore 
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meta-models or simplifi ed regressions 
are often used to represent the model re-
sponses by surrogate functions in terms 
of the model inputs. Many meta-model 
approaches are available and it is often 
not clear which one is most suitable for a 
given problem (Roos et al. 2007). Another 
disadvantage of meta-modeling is its limi-
tation to a small number of input parame-
ters. Due to the so-called “curse of dimen-
sionality” there is a dramatic decrease in 
the quality of approximation for all meta-
model types as the number of variables in-
creases. As a result, an enormous number 
of samples are required to represent high-
dimensional problems with suffi cient ac-
curacy. In order to overcome these prob-
lems, Dynardo developed the Metamodel 
of Optimal Prognosis (Most and Will 2008, 
2011). In this approach, the optimal input 
parameter subspace together with the op-
timal meta-model type is automatically 
determined with the help of an objective 
and model-independent quality measure, 
the Coeffi cient of Prognosis (CoP). 

In Figure 1, the general fl ow of this meta-
model based sensitivity analysis is shown: 
after the defi nition of the design parame-
ters and model responses the Design of Ex-
periments or sampling methods generate a 
specifi c number of designs. These samples 
are evaluated by the solver and the model 
responses are determined for each design. 

Approximation models are built for each 
model response and assessed regarding 
their quality. Finally, variance based sen-
sitivity indices are estimated by using the 
underlying approximation models.

The Design of Experiment (DoE) generates 
samples which are used to identify the pa-
rameter importance. Since one main part 
of the MOP/CoP algorithm is the reduction 
of the parameter space using only the im-
portant parameters, sampling strategies 
which vary every parameter in every design 
are needed. Please note that traditional 
deterministic DoE schemes like full facto-
rial or D-optimal usually only vary on a few 
parameters each time. If the unimportant 
parameters are fi ltered out of the data, 
such schemes will lose the majority of de-
sign point information. Therefore, space 
fi lling, (quasi) random sampling methods 
seem to be more suitable for such tasks. In 
our experience, Latin Hypercube Sampling 
with reduced input correlation errors has 
been observed to be the most effective 
sampling scheme for the majority of inves-
tigated problems.

The assumption that non-trivial problems 
have a large number of potentially impor-
tant input parameters, simple assump-
tions like pairwise linear correlations, as 
well as nonlinear dependencies of mul-
tiple input parameters including their 

interactions need to be investigated for a 
reliable assessment of the parameter im-
portance. Simple linear correlation mod-
els and advanced nonlinear meta-models 
need to be evaluated in parallel. In order to 
identify the optimal meta-model includ-
ing the best input parameter subspace, 
the model-independent quality measure 
Coeffi cient of Prognosis can be used. This 
measure estimates how well a meta-mod-
el can represent unknown data. Compared 
to classical measures, where the “good-
ness of fi t” is only evaluated at the points 
which are used to build the model, the CoP 
gives much more reliable estimates espe-
cially for a large number of input param-
eters and a limited number of available 
designs.

Finally, the automatic MOP/CoP approach 
solves three very important tasks of a pa-
rameter sensitivity analysis: the identifi ca-

tion of the most important combination of 
input parameters together with the best 
suitable surrogate function in order to ob-
tain the optimal forecast quality of the 
response variation. This algorithm gives 
the main value to our customers. By “un-
derstanding the design”, the important in-
put variations are detected regarding the 
response variation. Further, information 
about the extent of non-linearity of the 
problem is derived. This is combined with 
best result extraction to obtain response 
values which have the highest possible 
forecast quality, representing the response 
variation by the input parameters, and are 
minimally effected by solver and extraction 
errors. In Table 1, the signifi cant improve-
ments with respect to simple correlations 
and multi-dimensional polynomials are 
summarized. 
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Figure 1: Flowchart of variance-based sensitivity analysis using the Metamodel of Optimal Prognosis

Table 1: Comparison of global sensitivity methods to quantify the input parameter infl uence to the output varia-

tion: traditional one-dimensional correlation analysis, multi-dimensional polynomial regression and the Metamodel 

of Optimal Prognosis

Simple Correlation Measures Polynomial Regression Models Metamodel of Optimal Prognosis

One-dimensional Multi-dimensional Multi-dimensional

Single parameter infl uence
All parameters or step-wise 
regression 

Automatic identifi cation of 
important parameters

Linear or monotonic dependencies
Linear or quadratic dependencies 
with interactions

Nonlinear (continuous) 
dependencies 

No interactions Linear interactions Nonlinear interactions

No error measure
Goodness-of-fi t or statistical tests 
as error measure

Prognosis quality as error measure 
(CoP)

Sensitivity Analysis Sensitivity Analysis



Besides using the sensitivity analysis to re-
duce the number of optimization parame-
ters to the most important ones, it can also 
be used to learn more about the character 
of an optimization problem: 

• How non-linear and noisy are the re-
sponse functions?

• Is an improvement of the result extraction 
of the solver output possible in order to 
achieve a better representation of the re-
sponses to the optimization parameters?

• Is an adjustment of the variation range of 
the optimization parameters necessary? 

• How many responses are in confl ict with 
each other?

• Has the initial scan of the design space 
already identifi ed good designs which 
could be introduced as starting points for 
the following optimization algorithm?

els may locally differ from the solver solu-
tion, the obtained optimal design should 
be verifi ed with an additional CAE-run. If 
the obtained design shows a suffi cient im-
provement, the analysis may be stopped 
here. Otherwise, further improvements 
of the design are possible by adapting the 
approximation functions with additional 
designs or by running a direct search.

For the search of an optimal design on 
an approximation function or even with 
direct solver runs, a huge number of op-
timization algorithms can be found in lit-
erature. They can be classifi ed in gradient-
based algorithms like steepest descent 
and Newton methods (Kelley 1999), heu-
ristic gradient-free approaches like grid or 
pattern search, adaptive response surfaces 
and simplex optimizer, and also nature-
inspired search methods like genetic and 
evolutionary algorithms (Bäck 1996), par-
ticle swarm optimization (Engelbrecht 
2005) and simulated annealing. 

In Table 2 (see next page), a set of represen-
tative methods is given and assessed with 
respect to its fi eld of applications.

Often, several objectives have to be ad-
dressed in the optimization task. In cases 
where these objectives are in confl ict with 
each other and a suitable weighting of 
these objectives is not possible with the 
available knowledge, the application of 
single-objective optimization methods 
may be diffi cult. In such cases, the op-
timization can be performed by search-
ing simultaneously for different possible 
compromises between the confl icting ob-
jectives, a so-called Pareto frontier. Once 
this frontier is obtained, more qualifi ed 
decisions are possible in order to specify 
further requirements for the selection of 
a suitable design out of this frontier or its 
further improvement by single-objective 
methods. Today, genetic and evolutionary 
algorithms as well as particle swarm opti-
mization methods are often the methods 
of choice for an effi cient Pareto search.
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Optimization

Consequently, the fi ndings from the sensi-
tivity study will result in a qualifi ed defi ni-
tion of the input parameter space, its ob-
jectives and constraints. It may even assist 
in making an appropriate choice of opti-
mization algorithm and the corresponding 
settings.

In Figure 2, the recommended workfl ow of 
a single-objective optimization procedure 
is shown. After the defi nition of the design 
space, a sensitivity analysis is performed. 
As a result of the sensitivity analysis, un-
important parameters are fi ltered and an 
optimal meta-model is obtained for each 
response. This is followed by the defi nition 
of objectives and constraints. In a fi rst step, 
the MOP approximation can be used to 
run a pre-optimization without expensive 
solver calls. Since the approximation mod-

Sensitivity Analysis Optimization

Figure 2: Recommended workfl ow for a single-objective optimization: from a full parameter set X the sensitivity analy-

sis identifi es the important parameters xred; together with the start design x0 the optimization is performed and an 

optimal design xopt is found.

x xred
x0

xopt
xi xi xiyi (xi) (xi)

xopt

OOOPOPPTTTOPTOPTPTOPT
MU LTI DISCI PLI NARY DETERMI N ISTIC 
OPTIMIZATION



As noted, satisfying design requirements 
will necessitate ensuring that the scatter of 
all important responses by fl uctuating geo-
metrical, material or environmental vari-
ability lies within acceptable design limits. 
With the help of the robustness analysis, 
this scatter can be estimated. Within this 
framework, the scatter of a response may 
be described by its mean value and stan-
dard deviation or its safety margin with re-
spect to a specifi ed failure limit. The safety 
margin can be variance-based (specifying 
a margin between failure and the mean 
value) or probability-based (using the prob-
ability that the failure limit is exceeded). In 
Figure 3, this is shown in principle.

In the variance-based approach, the safety 
margin is often given in terms of the ac-
cording standard deviation of the corre-

sponding response. A “six sigma” design 
should fulfi l a safety margin of six times 
the standard deviation. Assuming a nor-
mally distributed response, the classical 
six sigma concept considers an additional 
safety margin of 1.5 times the standard de-
viation. The 4.5 sigma margin of a normal 
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Algorithm Global 
search

Local 
search

No. of 
parameter Constraints Failed 

designs
Solver 
noise

Discrete 
parameters

Gradient based 
(NLPQL/ SQP)

no ideal <= 20 many no no no

Downhill simplex 
method

yes ideal <= 5 few yes
minor 
noise

ordered 
discrete

Response surface 
methods 

ideal ideal <= 20 many yes yes
ordered 
discrete

Evolutionary & ge-
netic algorithms

ideal yes many yes many yes yes

Particle swarm 
optimization

ideal yes many few yes yes
ordered 
discrete

Simulated 
annealing

yes no <= 20 few yes yes yes

Table 2: Comparison of common optimization methods: the maximum number of parameters is defi ned regarding the 

effi ciency of the optimization method compared to the other algorithms ROBUSTN ESS EVALUATION

Optimization

Random Response

Limit

pF

Safety 
Margin

Figure 3: Scatter of a fl uctuating response with safety 

margin (distance between mean and the failure limit) 

and the corresponding probability of failure pF
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N
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distribution corresponds to a failure rate 
of 3.4 defects out of one million design 
realizations. The assumption of a normally 
distributed response may not be valid if 
non-linear effects dominate the mecha-
nisms of failure (Most and Will 2012). In 
such cases, the extrapolation of rare event 
probabilities, like 3.4 out of a million, just 
from the estimated mean value and stan-
dard deviation may be strongly erroneous. 
Thus, the assumption of a normal distri-
bution should be verifi ed at least at the 
fi nal RDO design. If this is not the case, the 
probability of failure should be estimated 
with the more qualifi ed reliability analysis.

Defi nition of uncertainties 

In variance-based and probability-based 
robustness evaluation, the defi nition of the 
uncertainty of scattering input variables 
plays an important role. A wrong assump-
tion in this defi nition may cause large er-
rors in the estimated robustness and safety 
measures. This may lead to useless or even 
dangerous results. Therefore, this step 
should be carefully validated. If only insuf-
fi cient data are available, a conservative as-
sumption of lower and upper bounds using 
a uniform distribution is recommended.

The scattering inputs can be described 
as scalar random variables or as stochas-
tic processes and fi elds. Scalar random 
variables represent the scatter of a single 
variable independently by a probability 
distribution. With the help of statistical 
moments such as mean value and stan-
dard deviation and a specifi c distribution 

type like normal, log-normal or uniform, 
the scatter can be represented in mathe-
matical form. In addition, discrete random 
variables can be modeled – for example by 
a binomial distribution.

If the random variables are assumed to be 
independent but they are not in reality, a 
combination of physically non observable 
extreme values may be possible. As an ex-
ample: if the yield stress and the tensile 
strength of steel are defi ned as indepen-
dent scattering variables, some realiza-
tions will lead to lower tensile strength 
than yield stress, which is obviously non-
physical. Therefore, material parameters 
or loading conditions which show signifi -
cant dependencies need to be considered 
in the uncertainty model. For normally-
distributed variables, this dependence can 
only be linear and can be represented in 
closed form. However, industrial applica-
tions require the adequate representa-
tion of dependencies between different 
distribution types. This can be realized by 
sophisticated correlation models like the 
Nataf approach (Nataf 1962).

If the spatial distribution of geometrical 
and material properties may affect the 
physical behavior of the design, a more de-
tailed representation of the spatially cor-
related scatter is necessary. With the help 
of the random fi eld methodology, complex 
spatial distributions and correlations can 
be analyzed and reconstructed for a subse-
quent robustness evaluation. The continu-
ous fi eld is discretized in this framework 
by a reasonable number of scalar random 
variables which are associated with scat-

ter shapes. Its statistical evaluation is then 
straightforward (Wolff 2013). The random 
fi eld concept can be used to model spa-
tially distributed input variables as well 
as to analyze spatial response values. For 
example, random fi elds may help to detect 
hot spots in the response values which are 
responsible for local failure mechanisms.

In case of only roughly known input scat-
ter, a robust design optimization may be 
used to estimate the maximum possible 
scatter for specifi c input parameters. In 
such procedure, a qualifi ed knowledge 
of the input uncertainty is not necessary 
(Most & Will 2017).

Variance-based robustness analysis 

Today, the majority of RDO approaches 
uses variance-based robustness measures 
in order to minimize the variation of a re-
sponse with or without constraining the 
mean, which is known as the Taguchi ap-
proach, or to reach a certain level of safety 
quantifi ed by the safety margin or sigma 
levels, where Design for Six Sigma is one 
possible concept.

Since the Taguchi approach is well-known 
in the industrial Six Sigma community, the 
application of this strategy to the virtual 
product development often needs some 
extensions. The main aim of the Taguchi 
approach is to reduce the scatter of a fi nal 
product parameter to an acceptable level. 
Within a production line, the exceeding of 
this limiting level can usually be measured 
with a high accuracy. In this case, a sensitiv-

ity analysis is performed in order to detect 
the responsible scattering input variables. 
With this information, some of the impor-
tant input sources may be reduced in order 
to result in smaller product scatter. But the 
reduction of the input scatter is only one 
possibility route to reduce the output scat-
ter. This approach inevitably drives the pro-
cess to increasingly tight tolerances with 
respect to the materials and the production 
process. This might extremely increase the 
production costs. In virtual prototyping, by 
contrast, designs with inherently reduced 
sensitivity are usually preferred to input 
scatter. Often, Taguchi based RDO strate-
gies try to reduce the sensitivity to the in-
put scatter only and aim for designs with 
the lowest standard deviation. But a design 
with a very low standard deviation can still 
violate the safety constraints. On the other 
hand, the Taguchi approach may result in 
designs which are over engineered and not 
cost-effective. Therefore, it is recommend-
ed in the framework of variance-based 
RDO that the target is not simply the low-
est possible standard deviation, but also to 
consider a suffi cient safety margin to fail-
ure or operation limits. As a consequence, 
the proof of a suffi cient safety margin to 
failure and operational limits should be the 
primary goal of RDO in virtual prototyping. 
In case of stringent requirements with re-
spect to design tolerances (as in Design for 
Six Sigma), a fi nal reliability proof should be 
considered.

Besides these fundamental questions, ap-
proaches for variance-based robustness 
evaluations need to estimate the neces-
sary statistical measures as mean value 
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and standard deviation with a suffi cient 
confi dence. Based on the initial uncertain-
ty defi nition, several approaches for their 
determination are available. An overview 
is given in Table 3 (see next page). 

In case of a linear dependence between 
input variables and responses, the mean 
value and the standard deviation can be 
calculated analytically in a closed form. 
Therefore, some methods use a lineariza-
tion around the mean for these estimates 
(e.g. First Order Second Moments), which 
is very effi cient for a small number of in-
put parameters. However, in case of non-
linear dependencies, such a procedure 
may obtain strongly erroneous statistical 
estimates. Similar approaches by using a 
global linear or quadratic response surface 
have the same limitations: if the assumed 
linear or quadratic dependence is not val-
id, the estimated safety level may be far 
away from the real value. This is even the 
case for the polynomial chaos expansion 
approach: if the expansion can represent 
the physical behavior with low order basis 
terms, the safety assessment is confi dent 
and can be achieved effi ciently. If this is 

not the case, the results of the low order 
approximations are not suitable for a safe-
ty assessment and higher order terms are 
needed which dramatically increases the 
number of necessary solver runs.

For industrial applications with a larger 
number of scattering inputs and non-linear 
dependencies, Monte Carlo based meth-
ods are more suitable (Will 2007). The Latin 
Hypercube Sampling (LHS) is an approach 
where the distribution of the samples is op-
timized with respect to small errors in the 
statistical estimates. This method does not 
assume any degree of model behavior and 
can also handle discontinuous responses. 
Furthermore, it works independently of the 
number of input parameters. 

Rough estimates of mean and standard 
deviation are possible with just 20 solver 
runs. More precise estimates of mean and 
standard deviation can be obtained by us-
ing 50 to 100 samples. Based on the evalu-
ated data and the estimated scatter of the 
responses, variance-based sensitivity mea-
sures can be evaluated in order to further 
analyze the source of uncertainty. From our 

experience, using a small LHS sample set 
to estimate standard deviation is an effec-
tive method which is also robust against 
system nonlinearity. By fi tting the distri-
bution function into the histogram of the 
response, the window of probability based 
on standard deviation as well as on fi tted 
distribution functions can also be verifi ed. 

In Figure 4, the overall workfl ow of the 
variance-based robustness analysis is il-
lustrated. Based on the initial defi nition 
of the random parameters, representative 
samples are generated and evaluated by 
the solver. The solver results are used to 
estimate the statistical properties and to 
perform a sensitivity analysis with help of 
the MOP approach. If the design does not 
fulfi ll the robustness requirements, the 
MOP/CoP analysis helps to identify these 
input parameters which are responsible 
for the violation of limits. 

Reliability-based robustness analysis

Variance-based measures are often used 
within the RDO workfl ows due to their effi -
ciency with respect to the number of solver 

runs. Therefore, it is very important that, at 
least for the fi nal design, the targeted prob-
ability of exceeding a failure limit is verifi ed. 
In engineering applications, reliability lev-
els of at least 3 sigma (1.3 out of 1000) are 
usually required for non-critical products 
like high end consumer goods, while up to 
5 sigma (less than one failure in one million 
designs) is required for safety relevant criti-
cal components. These kinds of rare events 
are usually connected to the non-linearity 
of the design being considered. Thus, it 
becomes diffi cult to estimate the prob-
ability distribution of relevant response 
values (e.g. maximum stresses). This is 
also true with respect to rare events where 
suffi cient accuracy can only be reached if 
variance based methods or low-order ap-
proximations based on linearization or se-
ries expansions are applied. Therefore, the 
estimates of small probabilities have to be 
verifi ed with a qualifi ed reliability analysis.

With the reliability method, the probabil-
ity of reaching a failure limit is obtained by 
an integration of the probability density 
of the uncertainties in the failure domain 
as shown in Figure 5 (see next page). One 
well-known method is the Monte Carlo 
Simulation, which can be applied indepen-
dently of the model non-linearity and the 
number of input parameters (Rubinstein 
1981). This method is very robust and can 
detect several failure regions with highly 
non-linear dependencies. Unfortunately, 
it requires an extremely large number of 
solver runs to prove rare events.

Therefore, more advanced sampling strat-
egies have been developed like Directional 
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Approach Degree of non-linearity Distribution types No. of parameters

First Order (linearization) linear only normal <= 50

Polynomial chaos expansion linear & quadratic only few <= 10

Global Response Surface linear & quadratic arbitrary <= 10

Monte Carlo methods (LHS) arbitrary arbitrary many

Table 3: Comparison of statistical methods for variance-based robustness evaluation

Figure 4: Flowchart of the variance-based robustness 

evaluation with an included sensitivity analysis
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Sampling, where the domain of input vari-
ables is scanned by a line search in differ-
ent directions, or Importance Sampling, 
where the sampling density is adapted 
in order to cover the failure domain suffi -
ciently and to obtain more accurate prob-
ability estimates with much less solver 
calls. Other methods like the First or Sec-
ond Order Reliability Method (FORM & 
SORM) are still more effi cient than the 
sampling methods by approximating the 
boundary between the safe and the failure 
domain, the so-called limit state. In con-
trast to a global low order approximation 
of the whole response, the approximation 
of the limit state around the most proba-
ble failure point (MPP) is much more accu-
rate. Classically, only one dominant failure 
point could be found and evaluated. This 
limitation holded even for the Importance 
Sampling Procedure Using Design points 
(ISPUD), where the non-linearity of the 
limit state can be considered by a sam-

pling around the MPP. A good overview of 
these “classical” methods is given in Bu-
cher (2009). Recently, these methods have 
been extended for multiple failure regions 
(Rasch et al. 2019). 

For a successful application of global re-
sponse surface methods, it is necessary 
to assure that the region around the most 
probable failure point is approximated 
with suffi cient accuracy. This can be 
reached by an iterative adaptation scheme, 
where new support points are generated 
in this region. With this improvement, two 
or three important failure regions can also 
be represented with a small number of 
solver runs (Roos & Adam 2006).

In reliability analysis, where small event 
probabilities have to be estimated, one 
has to pay special attention at an accept-
able level of confi dence obtained by the al-
gorithms in order to detect the important 

regions of failure. Otherwise, they may es-
timate a much smaller failure probability 
and the safety assessment will be much 
too optimistic. 

The available methods for an effi cient re-
liability analysis try to determine where 
the dominant failure regions are and to 
concentrate the simulation effort in those 
regions in order to drastically reduce the 
necessary CAE simulations. This is neces-
sary to become candidates of reliability for 
real world applications. Of course, there is 
always a risk that experimenting with such 
approaches will lead to inappropriate short 
cuts, perhaps missing the failure domain 
and providing too optimistic an estimation 
of failure probability. Therefore, it is strong-
ly recommended that at least two different 
reliability methods are used to verify vari-
ance-based estimates of the failure prob-
ability in order to make reasonable design 
decisions based on CAE-models.
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Figure 5: Reliability analysis as multi-dimensional integration of the probability density of the uncertainties of the 

inputs over the failure domain (left) and integration by Monte Carlo Simulation (right)

Approach Non-linearity Failure domains No. parameters No. solver runs

Monte Carlo Simulation arbitrary arbitrary many
>10^4 (3 sigma) 
>10^7 (5 sigma)

Directional Sampling arbitrary arbitrary <= 10 1000-5000

Adaptive Importance 
Sampling

arbitrary one dominant <= 20 1000-5000

FORM, SORM, ISPUD continuous few dominant <=20 200-500

Adaptive Response 
Surface Method

continuous few dominant <=20 200-500

Table 4: Comparison of different qualifi ed reliability methods 
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In the framework of Robust Design Opti-
mization, the deterministic optimization 
methods are now extended by considering 
uncertainties of specifi c input variables. 
With help of a statistical evaluation of the 
no longer deterministic objective function 
and constraint conditions, the design is 

to perform such a sophisticated analysis. 
However, it is not necessary to prove the 
safety level of each design during the op-
timization process with such a high de-
gree of confi dence. Therefore, simplifi ed 
methods have been developed. A fi rst step 
to improve the effi ciency and the robust-
ness of a simultaneous Robust Design Op-
timization is to estimate the safety level 
with variance-based robustness measures. 
Taking into account an additional safety 
margin for approaches such as Design for 
Six Sigma, the coupled analysis can be per-
formed by using only 20 to 50 samples for 
each nominal design in order to get rea-
sonable estimates and to drive the opti-
mizer in the right direction. Nevertheless, a 
fi nal reliability proof should be considered 
again verifying the rough assumptions in 
the variance-based approach. In Figure 7 
such a workfl ow is illustrated.

One important advantage of this approach 
is that the expensive reliability analysis 
only has to be performed at the end of 
the procedure. Furthermore, due to the 
dimension-independent estimates of the 
variance based measures, a large number 
of uncertain inputs can be considered. 
However, the numerical effort is still 20 

to 50 times larger than the deterministic 
optimization with safety factors. This ap-
proach is thus limited to computational 
less expensive simulation models.

In Most & Will 2017, the simultaneous 
variance-based RDO approach was used to 
estimate the possible scatter of the input 
variables with respect to a given output 
variation. In this special case, the scat-
ter of selected geometry properties itself 
were treated as optimization parameters. 
By using a multi-objective optimization 
procedure, the trade-off between maxi-
mum allowed input scatter and invest of 
material could be illustrated depending on 
the required safety level.

To overcome the limitation, global re-
sponse surfaces are often applied. In case 
of simultaneous Robust Design Optimiza-
tion, the approximation function has to 
consider all design parameters and all of 
the uncertain inputs. For cases where the 
number of uncertain inputs is large, an 
effi cient application of such an approach 
is not possible (Most & Will 2012), since 
the number of necessary support points 
increases dramatically. However, a reduc-
tion in the number of inputs is dangerous 

driven to a region where the robustness re-
quirements are fulfi lled while the desired 
performance is optimal.

The mathematically most-accurate way 
to obtain a robust design which fulfi lls 
even the requirements of a small failure 
probability would be to couple a suitable 
deterministic optimizer with a reliability 
analysis and to formulate the constraint 
conditions with respect to the required 
safety level. This approach is called reliabil-
ity-based Robust Design Optimization and 
may be suitable for fast-running simula-
tion models (Most & Neubert 2013). Due 
to the high numerical effort of evaluating 
each and every design point with an addi-
tional reliability analysis – indeed, repeat-
ing this with a second algorithm - for most 
real world applications it is not possible 
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Figure 6: Robust Design Optimization – optimization 

considering uncertain input parameters and responses 

as well as objective and constraint functions

Figure 7: Flowchart of simultaneous variance-based Robust Design Optimization approach with fi nal reliability proof

Robust Design Optimization



since their infl uence may change when 
moving the nominal design through the 
design space. However, in some cases, this 
approach may perform well, but a fi nal 
robustness evaluation with direct solver 
calls should always be performed in order 
to verify the approximated safety level.

In our experience, an iterative Robust De-
sign Optimization procedure is usually 
more applicable to industrial applications 
than the simultaneous approach. In this 

In this example, a steel hook subjected to 
a vertical load of 6000 N is investigated. 
The hook is analyzed by linear fi nite ele-
ments and has a cylindrical support at its 

head which can perform free rotations. The 
numerical simulation, including geometry 
modeling and automatic meshing, is done 
using ANSYS Workbench. The Robust Design 

procedure, the deterministic optimization 
has to consider safety factors to assure a 
certain safety margin of the critical re-
sponses. After a fi rst optimization step, the 
robustness measures are evaluated and 
the safety level is assessed. These safety 
factors should be chosen such that the ro-
bustness requirements are fulfi lled. Gen-
erally, the safety factors are not known a 
priori. In this case, a suitable initial guess 
is specifi ed and the initial deterministic 
optimization is performed. If the safety 
requirements are not fulfi lled, the respon-
sible safety factors have to be increased 
and the deterministic optimization has to 
be repeated. With this approach, a robust 
design is usually found within 3 to 4 itera-
tions. If the robustness criteria are expect-
ed to be fulfi lled, a reliability proof is again 
necessary to verify higher safety levels. In 
Figure 8, the iterative approach is shown.

In Most et al. 2017, an iterative reliability-
based Robust Design Optimization is pre-
sented. In this study a variance-based ro-
bustness approach was not applicable due 
to a discrete limit state function, which 
did not allow to estimate safety factors. 
Nevertheless, the iterative approach could 
reduce the numerical effort dramatically 
compared to the simultaneous Robust De-
sign Optimization.
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Figure 8: Flowchart of an iterative Robust Design Opti-

mization with fi nal reliability proof

I LLUSTR ATIVE EXA MPLE:
ROBUST DESIGN OF A STEEL HOOK

Robust Design Optimization

Figure 9: Initial geometry, loading and boundary conditions and fi nite elements representation 



Optimization task in this example is to mini-
mize the mass while the maximum stress 
should not exceed a failure limit of 300 MPa. 
The required safety level is defi ned with a 4.5 
sigma safety margin corresponding to a fail-
ure rate of 3.4 out of a million.

For the optimization, 10 geometric proper-
ties are considered as design parameters. 
They are illustrated with their ranges in 
Figure 10. As a deterministic constraint, 

the opening width should not exceed 50 
mm. These 10 geometric parameters are 
also considered as uncertain parameters 
for the robustness evaluation. Addition-
ally, the scatter of the material parameters 
and the force value in tangential direction 
are taken into account. In order to consider 
non-tangential loading conditions, ad-
ditional zero mean force components are 
assumed for the other directions. Table 5 
gives an overview of the assumed distri-
butions and variations of these uncertain 
inputs. Since the design parameters are 
changed during the optimization process, 
the mean values of the corresponding ran-
dom variables have to be adjusted for the 
robustness evaluation. 

Robustness analysis of the initial design

In the fi rst step, a robustness evaluation 
of the initial design is performed. For this 
purpose, the geometry, material param-
eters and the force values are defi ned with 
the distribution and the variation given in 
Table 5. With this defi nition of the input 
scatter, a Latin Hypercube Sampling using 
100 samples is generated and evaluated by 
the solver. In Figure 11, the observed scat-
ter of the maximum stress value including 
its statistical properties is given. The fi gure 
shows, that the safety margin between the 
mean and the limit is only 0.6 sigma, which 
is much less than the required 4.5 sigma. 
The corresponding probability of failure is 
0.24. Based on these results, the user can 
judge that the optimized design is not ro-
bust. Applying the MOP approach to dis-
tinguish between the input uncertainties, 

the load can be discovered as the critical 
infl uence. A limitation of the scatter of this 
boundary condition does not seem possible 
since it would limit the applicability of the 
product. Therefore, in the next step, a mod-
ifi cation of structure is applied in order to 
be more robust against the defi ned input 
scatter level, which results in an increase 
of the design “in-built” safety margin. From 
the observed scatter of the initial design, 
it can be estimated that a mean value of 
maximum stress with 180 MPa would lead 
to the required safety margin of 4.5 sigma. 

Therefore, the next step is the performance 
of a deterministic optimization with re-
duced deterministic stress constraint. This 
is the fi rst adaptation step in the iterative 
Robust Design Optimization.

Sensivity analysis with respect to the de-
sign parameters

In the following step, a sensitivity analysis 
should identify the most important de-
sign parameters. For this purpose, a Latin 
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Figure 10: Geometry parameters considered in the opti-

mization with corresponding bounds 

Design parameter Distribution Mean value Standard deviation

Outer diameter yes normal (32 mm) 1 mm

Connection length yes normal (40 mm) 1 mm

Opening angle yes normal (20°) 2°

Upper blend radius yes normal (20 mm) 1 mm

Lower blend radius yes normal (20 mm) 1 mm

Connection angle yes normal (130°) 2°

Lower radius yes normal (55 mm) 1 mm

Fillet radius yes normal (3 mm) 0.2 mm

Thickness yes normal (20 mm) 1 mm

Depth yes normal (20 mm) 1 mm

Young’s modulus no log-normal 2e11 N/m² 1e10 N/m²

Poisson’s ratio no log-normal 0.3 0.015

Density no log-normal 7850 kg/m³ 157 kg/m³

Force x-direction no normal 0 N 100 N

Force y-direction no normal 6000 N 600 N

Force z-direction no normal 0 N 100 N

Table 5: Comparison of different qualifi ed reliability methods 



Hypercube Sampling with 100 samples is 
generated within the bounds of the 10 de-
sign variables and each design is evaluated 
by the simulation model. The mass, the 
maximum stress and the opening width 
are evaluated as model responses. 

Figure 12 depicts the obtained mass and 
stress values. The fi gure indicates that by 
decreasing the mass, the maximum stress 
increases. 30% of the designs exceed the 
stress failure limit. Furthermore, only 17% 
of the designs fulfi ll the stress constraint 

condition. Applying the MOP approach, an 
almost perfect representation of the re-
sponse values can be obtained with only 
some of the design parameters beeing rele-
vant. The lower radius, the depth and thick-
ness are important for mass and maximum 
stress as shown in Figure 13. The connec-
tion length and the outer diameter are only 
important for the mass. For each of the lat-
ter parameters, a positive correlation with 
the mass can be observed as illustrated in 
Figure 14 (see next page). Therefore, the 
minimum mass can be obtained using the 

lower bounds for these two parameters. 
As an outcome of the sensitivity analysis, 
these decisions have been made for the fol-
lowing optimization steps:

• The three blend radii are not important 
for the responses and are taken with 
their reference values.

• The connection length and the outer di-
ameter are only important for the mass 
and are considered with their minimum 
values.
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Figure 11: Results of the robustness evaluation of the initial design

Figure 12: Mass and maximum stress as confl icting re-

sponses; the failure limit and an assumed safety margin 

corresponding to a constraint of 180 MPa

Figure 13: Results of the sensitivity analysis: 6 design parameters mainly infl uence the mass; the maximum stress can 

be explained with only 3 design parameters



• Only the thickness, the depth, the low-
er radius, the outer diameter and the 
opening angle have to be considered as 
design parameters during the optimi-
zation. Their infl uence to the mass and 
maximum stress is contrary, thus an op-
timal combination has to be found dur-
ing the optimization.

Deterministic optimization 

In the fi rst optimization step, the minimiza-
tion of the mass is considered as an objective 
function. As a constraint condition, the max-
imum stress is limited to 180 MPa assuming 
a safety factor of about 1.7 to the stress limit 
of 300 MPa. With help of the already avail-
able MOP a pre-optimization can be done 
without any solver calls. As an optimizer on 
the MOP approximation functions, a gradi-
ent based approach is used which could 

improve the design from initially 1100 g to 
840 g. However, due to local approximation 
errors, the obtained optimum is valid on the 
MOP approximation, but the verifi cation 
with a direct solver call shows a slight viola-
tion of the constraint conditions. Neverthe-
less, this design is used as an appropriate 
start design for a direct optimization since it 
almost fulfi lls the constraint condition. As a 
direct optimizer, the gradient free Adaptive 
Response Surface Method is chosen. This al-
gorithm converges quite fast if the respons-
es show a global trend. Furthermore, it can 
handle solver noise, which might occur in 
this example in the stress values due to the 
automatic meshing procedure. The ARSM 
optimizer converges for this example within 
10 iterations using 150 designs. The ob-
tained optimum has a mass of 854 g while 
both constraint conditions are fulfi lled. In 
Figure 15, the initial and the optimized de-
sign are compared.

Robustness evaluation

For the optimized design, a robustness 
evaluation is performed using 100 Latin 
Hypercube samples. The resulting scatter 
of the maximum stress is shown in Figure 
16. As indicated, now the safety margin is 
about 4.7 sigma. By fi tting a normal distri-
bution function, a failure probability of 1.5 
out of one million is estimated. However, 
the real distribution at the tail of the histo-
gram is not known and estimating such a 
small failure probability with only 100 LHS 
samples may be strongly erroneous. There-
fore, a reliability proof of the estimated 
safety level is required.
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Figure 14: Infl uence of the connection length and the 

outer diameter to the mass

Example Example

Figure 15: Initial and optimized design of the fi rst deterministic optimization step

Figure 16: Results of the robustness evaluation of the fi rst optimization step 

Initial Design 
Mass = 1100 g

Maximum stress = 270 MPa
Opening width = 64 mm

Optimized Design 
Mass = 854 g

Maximum stress = 180 MPa
Opening width = 50 mm



Reliability proof of the design after the 
fi rst RDO step

In this step, the failure probability shall be 
proven to fulfi ll a 4.5 sigma safety level. 
This is equivalent to a failure probability of 
3.4 out of a million. The very robust Monte 
Carlo approach would need approximately 
30 million samples to verify such a small 
probability with 10 % statistical error. 

As reliability algorithm, the global Adaptive
Response Surface Method with the Moving
Least Squares approximation (Roos & Adam 
2006) is used, which approximates the limit 
state function in the random variable space. 
In this analysis, only the important param-
eters as analyzed in the previous robustness 
sampling are considered. As indicated in 
Figure 16 (see previous page), only the thick-

ness, the depth, the lower radius and the 
force component in the load axis are impor-
tant with respect to the maximum stress. 
Starting with 100 LHS samples within a +/-6 
sigma range, additional 40 samples are gen-
erated adaptively in the failure region. With 
these fi nal 140 designs, a failure probability 
of 74 out of one million is estimated, which 
corresponds to a safety level of 3.8. In Figure 
17, the support points and the detected fail-
ure region are shown. The fi gure indicates 
that only one dominant failure region ex-
ists. From these results, estimating a safety 
level of 3.8, it can be summarized that the 
estimation using the histogram from the 
robustness evaluation was too optimistic 
and the optimized design after the fi rst RDO 
iteration still does not fulfi ll the robustness 
requirements. Therefore, a second RDO it-
eration step is necessary.

Iterative Robustness Design Optimization 
– Second iteration step

Due to the violated robustness criteria of 
the fi rst optimization step, the stress con-
straint condition is decreased to 160 MPa 
and the optimization is performed again. 
Using a start design of the initial sensi-
tivity analysis which fulfi lls the modifi ed 
constraint condition, the ARSM optimizer 
converges within 6 iterations using 89 de-
signs. The obtained optimal design has the 
same geometric properties as from the pre-
vious optimization step but the depth is in-
creased whereas the thickness is already at 
the upper bound. The optimal designs are 
compared to the initial one in Figure 18.

For the optimized design, a robustness eval-
uation is performed using 100 Latin Hyper-

cube samples. The resulting scatter of the 
maximum stress is shown in Figure 19 (see 
next page).

Now, the estimated safety margin is 6.2 sig-
ma based on these 100 samples and a fi tted 
normal distribution, which is much larger 
than the required 4.5 sigma. However, the 
previous iteration step has shown that the 
roughly estimated safety level based on 
the variance estimates might have been 
too optimistic and, thus, a reliability proof 
is necessary. To prove the reliability, again 
a reliability analysis using the global Adap-
tive Response Surface Method by consid-
ering the four most important variables is 
performed. As indicated in Figure 20 (see 
next page), the estimated failure probabil-
ity is less than one out of a million and cor-
responds to a reliability index of 4.8. There-

Figure 18: Optimized designs of the fi rst and the second optimization step

Initial Design 
Mass = 1100 g

Maximum stress = 270 MPa
Opening width = 64 mm

First RDO step 
Mass = 854 g

Maximum stress = 180 MPa
Opening width = 50 mm

Second RDO step 
Mass = 958 g

Maximum stress = 160 MPa
Opening width = 50 mm
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Figure 17: Support points and identifi ed failure region of the Adaptive Response Surface reliability approach in the 

subspace of the most important input variables



fore, it can be assumeed that the optimized 
structure fulfi lls the robustness require-
ments. However, as already mentioned in 
the chapter “reliability-based robustness 
analysis”, it is strongly recommended to 
verify this reliability estimate with a sec-
ond algorithm. For this purpose, an Impor-

tance Sampling using Design Point (ISPUD) 
method is applied, whereby the most prob-
able failure point is obtained by a gradient 
based search within the FORM approach. 
In Figure 21, the results and the samples 
in the subspace of the most important pa-
rameters are shown.

Figure 22: History of the iterative RDO of the hook example: starting from an initial design the safety factor is in-

creased until the variance based robustness analysis and the reliability analysis indicate a robust design fulfi lling the 

requirements

Initial Design 
Mass = 1100 g

Mean stress = 270 MPa
Failure probability = 24%

Reliability index = 0.6

First RDO step 
Mass = 854 g

Mean stress = 180 MPa
Failure probability = 10-4

Reliability index = 3.8

Second RDO step 
Mass = 958 g

Mean stress = 160 MPa
Failure probability = 10-6

Reliability index = 4.8
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Figure 19: Results of the robustness evaluation of the optimal design from the second optimization step

Figure 20: Support points and identifi ed failure region of the Adaptive Response Surface reliability approach of the 

second optimization step

Figure 21: Final reliability proof of the the optimal design by the Importance Sampling approach



An initial sensitivity analysis is very useful 
in both the optimization design space as 
well as the scattering variable design space. 
Whilst any dimensionality of design space is 
valid for direct optimization, for real world 
RDO applications it has to be expected that 
(at least in the robustness space) to start 
with a large number of potentially impor-
tant scattering variables. 

In contrast to the design space of optimi-
zation, the variable reduction in robust-
ness space starting from all possible infl u-
encing variables is only possible with deep 
knowledge of the relative importance of 
the scattering variables. The initial sensi-
tivity analyses are therefore crucial for the 
selection of the appropriate optimization 
and stochastic algorithms. Furthermore, 
they are essential for an appropriate re-

ducing of the task size to the most effec-
tive optimization variables and the most 
important scattering variables. 

If the RDO task is defi ned with appropri-
ate robustness measures and safety dis-
tances, multiple optimization strategies 
can be performed successfully. If a design 
evaluation needs signifi cant time, the bal-
ance between the number of CAE design 
runs and the accuracy of robustness mea-
sures is a challenge for all RDO strategies, 
iterative or simultaneous. All approaches 
attempt to minimize the number of de-
sign evaluations and to estimate the ro-
bustness measures. If small failure prob-
abilities (less than 1 out of 100) need to be 
proven, algorithms of reliability analysis 
have to be applied, at least at the end of an 
RDO process to prove the optimal design.

Summary of the iterative RDO approach

• Iterative optimization along a “Pareto 
front”: For each optimization step, the 
maximum stress in the deterministic 
optimization was reduced. As expected 
for the hook example, minimizing mass 
and minimizing stress in tendency are 
two confl icting objectives. Also, it is in-
teresting to see that the variation of the 
maximum stress as a result of constant 
production and loading uncertainties 
also rises with lighter structures. There 
is the phenomenon that optimized 
structures often tend to be more sensi-
tive to uncertainties which motivates 
the integration of robustness evaluation 
in virtual prototyping.

• The optimal design of the fi rst optimiza-
tion step using a global safety factor of 
1.7 to the stress limit exceeds the failure 
limit with a 4.7 sigma safety margin. The 
variance based estimation of the second 
design indicated a 4.5 sigma design, but 
the reliability analysis did show that the 
estimation was too optimistic. After the 
seond optimization step with a further in-
creasing of the safety factor to 1.9, the de-
sign was proven to be a 4.5 sigma design 
having a failure probability lower than 3.4 
out of a million design realizations.
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